Inverse Kinematics of Redundant Manipulator using Interval Newton Method

نویسندگان

  • Virendra Kumar
  • Soumen Sen
چکیده

The paper presents an application of Interval Newton method to solve the inverse kinematics and redundancy resolution of a serial redundant manipulator. Such inverse problems are often encountered when the manipulator link lengths, joint angles and end-effector uncertainty bounds are given, which occurs due to because of inaccuracies in joint angle measurements, manufacturing tolerances, link geometries approximations, etc. The inverse kinematics of three degree of freedom planar redundant positioning manipulator without endeffector has been evaluated using the manipulability of Jacobian matrix as performance metric. To solve the nonlinear equation of inverse kinematics, the multidimensional Newton method is used. The inverse kinematics is intended to produce solutions for joint variables in interval of tolerances for specified end effector accuracy range. As exemplar problem solving, a planar 3-degrees-of-freedom serial link redundant manipulators is considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory

The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...

متن کامل

Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory

The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...

متن کامل

Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Abstract—This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Als...

متن کامل

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory

This paper presents an efficient method for solving the direct kinematics of parallel manipulators that follow a defined singularity-free trajectory. Despite the main problem is to solve the inverse kinematics, calculating the errors between the desired path and the actual path requires solving the forward kinematics which is a challenging problem. The proposed method combines closed-loop Jacob...

متن کامل

A Comparative Study of Prediction of Inverse Kinematics Solution of 2-DOF, 3-DOF and 5-DOF Redundant Manipulators by ANFIS

In this paper, a method for solving forward and inverse kinematics of redundant manipulator is proposed. Obtaining the joint variables of these manipulators from a desired position of the robot end-effector called as inverse kinematics (IK), is one of the most important problems in robot kinematics and control. The difficulties in solving the IK equations of these redundant robot manipulator ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016